Modeling of Ozone and Hydrogen Peroxide in Air

نویسندگان

  • Gordana Pehnec
  • Leo Klasinc
  • Tomislav Cvitaš
  • Vladimira Vađić
  • Glenda Šorgo
چکیده

Ozone (O3) and hydrogen peroxide (H2O2) volume fractions were calculated using the Master Mechanism (MM) model, author S. Madronich (NCAR, Boulder, CO, USA). MM is an atmospheric “box” model program for calculating the time evolution of atmospheric composition from initial amounts of atmospheric gases under chosen or varying conditions using reaction rate data and other physicochemical parameters. The photolysis coefficients were calculated using the Tropospheric Ultraviolet Visible (TUV) program of the same author. Data gathered during the field measurements in 2004 and modeled with the MM program are used here to determine how gradual increase of one initial value of the following eight quantities: NO2, CO, VOC (i.e. some volatile organic compounds), BTX (i.e. benzene, toluene, xylenes), H2O2, O3, temperature and relative humidity, will in the MM modeling affect the volume fractions of either ozone or hydrogen peroxide. According to the model, H2O2 volume fractions in air increase with higher relative humidity and higher initial values of CO, VOC, BTX, H2O2 and O3, and only decrease by NO2. On the other hand, ozone volume fractions do rise with the increase of initial volume fractions of NO2, as well as of CO, VOC, BTX, H2O2 and O3. Temperature does not have any significant influence on the formation of H2O2 and O3. The results also may explain the considerably higher ozone values measured at the airport than in the city of Zagreb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation into the effect of UV/Ozone Irradiation on the dyeing ‎behaviour of Poly(lactic acid) and Poly(ethylene terephthalate) ‎Substrates

The effect of UV/Ozone irradiation together with the pretreatments using distilled water, hydrogen peroxide, and hydrogen peroxide/sodium silicate solutions on the dyeing depth of the poly(lactic acid), PLA, and poly(ethylene terephthalate), PET, fabrics by the application of disperse dyes were investigated and the results were compared with that of untreated fabrics. The results showed that th...

متن کامل

Nano-Structure Roughening on Poly(Lactic Acid)PLA Substrates: Scanning Electron Microscopy (SEM) Surface Morphology Characterization

Scanningelectron microscopy (SEM) has been utilized  to examine  the morphology and topography alterations  in the surface of Poly(Lactic Acid)(PLA) fabrics due to UV/Ozoneirradiation. In the past decade, a growing attention in the usage of “Green Techniques” in industrial applications has been observed owing to many benefits such as low impurities and their relatively low cost to substitute th...

متن کامل

Trends, Seasonal Variations, and Analysis of High-elevation Surface Nitric Acid, Ozone, and Hydrogen Peroxide

Atmospheric photochemical oxidants nitric acid, ozone, and hydrogen peroxide were monitored in ambient air at Mt Mitchell State Park, North Carolina. Ozone measurements made from May to September during 1986-1990 are reported for two high-elevation sites (Site I on Mt Gibbs, approximately 2006 m; and Site 2 on Commissary Ridge, approximately 1760 m). These measurements are also compared to thos...

متن کامل

Impact of an Updated Carbon Bond Mechanism on Predictions from the CMAQ Modeling System: Preliminary Assessment

An updated and expanded version of the Carbon Bond mechanism (CB05) has been incorporated into the Community Multiscale Air Quality (CMAQ) modeling system to more accurately simulate wintertime, pristine, and high-altitude situations. The CB05 mechanism has nearly 2 times the number of reactions relative to the previous version of the Carbon Bond mechanism (CB-IV). While the expansions do provi...

متن کامل

Interaction of Hydrogen Peroxide and Nanophotocatalysts Produced Via Combustion Method; Its Influence on Dye Removal of Aquatic Environments

Background: Due to the large volume of water consumed in textile industry and producing the colored wastewater containing non-biodegradable organic dyes, in the present study the interaction of hydrogen peroxide and nanophotocatalyst in the advanced oxidation process was investigated. Methods: In this research, after synthesizing of nanophotocatalyst (ZnO:Ag:Nd) the effect of hydrogen peroxide ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010